Cargando…

Validation of Probabilistic Genotyping Software for Single Cell STR Analysis

Probabilistic genotyping (PG) and its associated software has greatly aided in forensic DNA mixture analysis, with it primarily being applied to mixed DNA profiles obtained from bulk cellular extracts. However, these software applications do not always result in probative information about the ident...

Descripción completa

Detalles Bibliográficos
Autores principales: Huffman, Kaitlin, Ballantyne, Jack
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048617/
https://www.ncbi.nlm.nih.gov/pubmed/36980945
http://dx.doi.org/10.3390/genes14030674
Descripción
Sumario:Probabilistic genotyping (PG) and its associated software has greatly aided in forensic DNA mixture analysis, with it primarily being applied to mixed DNA profiles obtained from bulk cellular extracts. However, these software applications do not always result in probative information about the identity of all donors to said mixtures/extracts. This is primarily due to mixture complexity caused by overlapping alleles and the presence of artifacts and minor donors. One way of reducing mixture complexity is to perform direct single cell subsampling of the bulk mixture prior to genotyping and interpretation. The analysis of low template DNA samples, including from single or few cells, has also benefited from the application of PG methods. With the application of PG, multiple cell subsamples originating from the same donor can be combined into a single analysis using the software replicate analysis function often resulting in full DNA profile donor information. In the present work, we demonstrate how two PG software systems, STRmix(TM) and EuroForMix, were successfully validated for single or few cell applications.