Cargando…

Microencapsulation of Carotenoid-Rich Extract from Guaraná Peels and Study of Microparticle Functionality through Incorporation into an Oatmeal Paste

The peels of guaraná (Paullinia cupana) fruit contain abundant carotenoid content, which has demonstrated health benefits. However, these compounds are unstable in certain conditions, and their application into food products can be changed considering the processing parameters. This study aimed to e...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinho, Lorena Silva, Patel, Bhavesh K., Campanella, Osvaldo H., Rodrigues, Christianne Elisabete da Costa, Favaro-Trindade, Carmen Sílvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048682/
https://www.ncbi.nlm.nih.gov/pubmed/36981097
http://dx.doi.org/10.3390/foods12061170
Descripción
Sumario:The peels of guaraná (Paullinia cupana) fruit contain abundant carotenoid content, which has demonstrated health benefits. However, these compounds are unstable in certain conditions, and their application into food products can be changed considering the processing parameters. This study aimed to encapsulate the carotenoid-rich extract from guaraná peels by spray drying (SD), characterize the microparticles, investigate their influence on the pasting properties of oatmeal paste, and evaluate the effects of temperature and shear on carotenoid stability during the preparation of this product. A rheometer with a pasting cell was used to simulate the extrusion conditions. Temperatures of 70, 80, and 90 °C and shear rates of 50 and 100 1/s were the parameters evaluated. Microparticles with a total carotenoid content between 40 and 96 µg/g were obtained. Over the storage period, carotenoid stability, particle size, color, moisture, and water activity varied according to the core:carrier material proportion used. Afterward, the formulation SD1:2 was selected to be incorporated in oatmeal, and the paste viscosity was influenced by the addition of this powder. β-carotene retention was higher than that of lutein following the treatment. The less severe treatment involving a temperature of 70 °C and a shear rate of 50 1/s exhibited better retention of total carotenoids, regardless of whether the carotenoid-rich extract was encapsulated or non-encapsulated. In the other treatments, the thermomechanical stress significantly influenced the stability of the total carotenoid. These results suggest that the addition of encapsulated carotenoids to foods prepared at higher temperatures has the potential for the development of functional and stable products.