Cargando…
Ca-Alginate Hydrogel with Immobilized Callus Cells as a New Delivery System of Grape Seed Extract
The development of new delivery systems for polyphenols is necessary to maintain their antioxidant activity and targeted delivery. The purpose of this investigation was to obtain alginate hydrogels with immobilized callus cells, in order to study the interaction between the physicochemical propertie...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048767/ https://www.ncbi.nlm.nih.gov/pubmed/36975705 http://dx.doi.org/10.3390/gels9030256 |
Sumario: | The development of new delivery systems for polyphenols is necessary to maintain their antioxidant activity and targeted delivery. The purpose of this investigation was to obtain alginate hydrogels with immobilized callus cells, in order to study the interaction between the physicochemical properties of hydrogels, texture, swelling behaviour, and grape seed extract (GSE) release in vitro. The inclusion of duckweed (LMC) and campion (SVC) callus cells in hydrogels led to a decrease in their porosity, gel strength, adhesiveness, and thermal stability, and an increase in the encapsulation efficiency compared with alginate hydrogel. The incorporation of LMC cells (0.17 g/mL), which were smaller, resulted in the formation of a stronger gel. The Fourier transform infrared analyses indicated the entrapment of GSE in the alginate hydrogel. Alginate/callus hydrogels had reduced swelling and GSE release in the simulated intestinal (SIF) and colonic (SCF) fluids due to their less porous structure and the retention of GSE in cells. Alginate/callus hydrogels gradually released GSE in SIF and SCF. The faster GSE release in SIF and SCF was associated with reduced gel strength and increased swelling of the hydrogels. LMC-1.0Alginate hydrogels with lower swelling, higher initial gel strength, and thermal stability released GSE more slowly in SIF and SCF. The GSE release was dependent on the content of SVC cells in 1.0% alginate hydrogels. The data obtained show that the addition of callus cells to the hydrogel provides them with physicochemical and textural properties that are useful for the development of drug delivery systems in the colon. |
---|