Cargando…
C-Terminal Truncated HBx Facilitates Oncogenesis by Modulating Cell Cycle and Glucose Metabolism in FXR-Deficient Hepatocellular Carcinoma
Farnesoid X receptor (FXR) is a nuclear receptor known to play protective roles in anti-hepatocarcinogenesis and regulation of the basal metabolism of glucose, lipids, and bile acids. FXR expression is low or absent in HBV-associated hepatocarcinogenesis. Full-length HBx and HBx C-terminal truncatio...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048952/ https://www.ncbi.nlm.nih.gov/pubmed/36982249 http://dx.doi.org/10.3390/ijms24065174 |
Sumario: | Farnesoid X receptor (FXR) is a nuclear receptor known to play protective roles in anti-hepatocarcinogenesis and regulation of the basal metabolism of glucose, lipids, and bile acids. FXR expression is low or absent in HBV-associated hepatocarcinogenesis. Full-length HBx and HBx C-terminal truncation are frequently found in clinical HCC samples and play distinct roles in hepatocarcinogenesis by interacting with FXR or FXR signaling. However, the impact of C-terminal truncated HBx on the progression of hepatocarcinogenesis in the absence of FXR is unclear. In this study, we found that one known FXR binding protein, a C-terminal truncated X protein (HBx C40) enhanced obviously and promoted tumor cell proliferation and migration by altering cell cycle distribution and inducing apoptosis in the absence of FXR. HBx C40 enhanced the growth of FXR-deficient tumors in vivo. In addition, RNA-sequencing analysis showed that HBx C40 overexpression could affect energy metabolism. Overexpressed HSPB8 aggravated the metabolic reprogramming induced by down-regulating glucose metabolism-associated hexokinase 2 genes in HBx C40-induced hepatocarcinogenesis. Overall, our study suggests that C-terminal truncated HBx C40 synergizes with FXR deficiency by altering cell cycle distribution as well as disturbing glucose metabolism to promote HCC development. |
---|