Cargando…
Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions
The purpose of this study was to develop a prediction model to identify individuals and populations with a high risk of being hospitalized due to an ambulatory care-sensitive condition who might benefit from preventative actions or tailored treatment options to avoid subsequent hospital admission. A...
Autores principales: | Schulte, Timo, Wurz, Tillmann, Groene, Oliver, Bohnet-Joschko, Sabine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049041/ https://www.ncbi.nlm.nih.gov/pubmed/36981600 http://dx.doi.org/10.3390/ijerph20064693 |
Ejemplares similares
-
How can Big Data Analytics Support People-Centred and Integrated Health Services: A Scoping Review
por: Schulte, Timo, et al.
Publicado: (2022) -
Nursing home-sensitive conditions: analysis of routine health insurance data and modified Delphi analysis of potentially avoidable hospitalizations
por: Bohnet-Joschko, Sabine, et al.
Publicado: (2022) -
Real World—Big Data Analytics in Healthcare
por: Piovani, Daniele, et al.
Publicado: (2022) -
Donating Health Data to Research: Influential Characteristics of Individuals Engaging in Self-Tracking
por: Pilgrim, Katharina, et al.
Publicado: (2022) -
Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov
por: Zippel, Claus, et al.
Publicado: (2021)