Cargando…
ECG-Based Semi-Supervised Anomaly Detection for Early Detection and Monitoring of Epileptic Seizures
Epilepsy is one of the most common brain diseases, characterized by frequent recurrent seizures or “ictal” states. A patient experiences uncontrollable muscular contractions, inducing loss of mobility and balance, which may result in injury or even death during these ictal states. Extensive investig...
Autores principales: | Karasmanoglou, Apostolos, Antonakakis, Marios, Zervakis, Michalis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049350/ https://www.ncbi.nlm.nih.gov/pubmed/36981911 http://dx.doi.org/10.3390/ijerph20065000 |
Ejemplares similares
-
Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment
por: Vandecasteele, Kaat, et al.
Publicado: (2017) -
Semi-Supervised Anomaly Detection in Video-Surveillance Scenes in the Wild
por: Sarker, Mohammad Ibrahim, et al.
Publicado: (2021) -
A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data
por: Song, Hongchao, et al.
Publicado: (2017) -
Semi-Supervised Anomaly Detection of Dissolved Oxygen Sensor in Wastewater Treatment Plants
por: Ghinea, Liliana Maria, et al.
Publicado: (2023) -
Wearable Epileptic Seizure Prediction System with Machine-Learning-Based Anomaly Detection of Heart Rate Variability
por: Yamakawa, Toshitaka, et al.
Publicado: (2020)