Cargando…

Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage

Skeletal muscle is an important economic trait in duck breeding; however, little is known about the molecular mechanisms of its embryonic development. Here, the transcriptomes and metabolomes of breast muscle of Pekin duck from 15 (E15_BM), 21 (E21_BM), and 27 (E27_BM) days of incubation were compar...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Zhigang, Liu, Xiaolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049352/
https://www.ncbi.nlm.nih.gov/pubmed/36982289
http://dx.doi.org/10.3390/ijms24065214
Descripción
Sumario:Skeletal muscle is an important economic trait in duck breeding; however, little is known about the molecular mechanisms of its embryonic development. Here, the transcriptomes and metabolomes of breast muscle of Pekin duck from 15 (E15_BM), 21 (E21_BM), and 27 (E27_BM) days of incubation were compared and analyzed. The metabolome results showed that the differentially accumulated metabolites (DAMs), including the up-regulated metabolites, l-glutamic acid, n-acetyl-1-aspartylglutamic acid, l-2-aminoadipic acid, 3-hydroxybutyric acid, bilirubin, and the significantly down-regulated metabolites, palmitic acid, 4-guanidinobutanoate, myristic acid, 3-dehydroxycarnitine, and s-adenosylmethioninamine, were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of cofactors, protein digestion and absorption, and histidine metabolism, suggesting that these pathways may play important roles in the muscle development of duck during the embryonic stage. Moreover, a total of 2142 (1552 up-regulated and 590 down-regulated), 4873 (3810 up-regulated and 1063 down-regulated), and 2401 (1606 up-regulated and 795 down-regulated) DEGs were identified from E15_BM vs. E21_BM, E15_BM vs. E27_BM and E21_BM vs. E27_BM in the transcriptome, respectively. The significantly enriched GO terms from biological processes were positive regulation of cell proliferation, regulation of cell cycle, actin filament organization, and regulation of actin cytoskeleton organization, which were associated with muscle or cell growth and development. Seven significant pathways, highly enriched by FYN, PTK2, PXN, CRK, CRKL, PAK, RHOA, ROCK, INSR, PDPK1, and ARHGEF, were focal adhesion, regulation of actin cytoskeleton, wnt signaling pathway, insulin signaling pathway, extracellular matrix (ECM)-receptor interaction, cell cycle, and adherens junction, which participated in regulating the development of skeletal muscle in Pekin duck during the embryonic stage. KEGG pathway analysis of the integrated transcriptome and metabolome indicated that the pathways, including arginine and proline metabolism, protein digestion and absorption, and histidine metabolism, were involved in regulating skeletal muscle development in embryonic Pekin duck. These findings suggested that the candidate genes and metabolites involved in crucial biological pathways may regulate muscle development in the Pekin duck at the embryonic stage, and increased our understanding of the molecular mechanisms underlying the avian muscle development.