Cargando…
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 and 13 repress BLADE-ON-PETIOLE 1 and 2 directly to promote adult leaf morphology in Arabidopsis
The juvenile-to-adult phase transition during vegetative development is a critical decision point in a plant’s life cycle. This transition is mediated by a decline in levels of miR156/157 and an increase in the activities of its direct targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) proteins....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049914/ https://www.ncbi.nlm.nih.gov/pubmed/36629519 http://dx.doi.org/10.1093/jxb/erad017 |
Sumario: | The juvenile-to-adult phase transition during vegetative development is a critical decision point in a plant’s life cycle. This transition is mediated by a decline in levels of miR156/157 and an increase in the activities of its direct targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) proteins. In Arabidopsis, the juvenile-to-adult transition is characterized by an increase in the length to width ratio of the leaf blade (a change in the distal region of a leaf), but what mediates this change in lamina shape is not known. Here, we show that ectopic expression of SPL9 and SPL13 produces enlarged and elongated leaves, resembling leaves from the blade-on-petiole1 (bop1) bop2 double mutant. The expression of BOP1/BOP2 is down-regulated in successive leaves, correlating with the amount of miR156 and antagonistic to the expression of SPL9 and SPL13 in leaves. SPL9 and SPL13 bind to the promoters of BOP1/BOP2 directly to repress their expression, resulting in delayed establishment of proliferative regions in leaves, which promotes more blade outgrowth (the distal region of a leaf) and suppresses petiole development (the proximal region of a leaf). Our results reveal a mechanism for leaf development along the proximal–distal axis, a heteroblastic character between juvenile leaves and adult leaves. |
---|