Cargando…
Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution mapping
While critical to biological processes, molecular diffusion is difficult to quantify, and spatial mapping of local diffusivity is even more challenging. Here we report a machine-learning-enabled approach, pixels-to-diffusivity (Pix2D), to directly extract the diffusion coefficient D from single-mole...
Autores principales: | Park, Ha H., Wang, Bowen, Moon, Suhong, Jepson, Tyler, Xu, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050076/ https://www.ncbi.nlm.nih.gov/pubmed/36977778 http://dx.doi.org/10.1038/s42003-023-04729-x |
Ejemplares similares
-
Machine learning assisted quantum super-resolution microscopy
por: Kudyshev, Zhaxylyk A., et al.
Publicado: (2023) -
High-quality super-resolution mapping using spatial deep learning
por: Zhang, Xining, et al.
Publicado: (2023) -
Author Correction: Machine learning assisted quantum super-resolution microscopy
por: Kudyshev, Zhaxylyk A., et al.
Publicado: (2023) -
Super-Resolution and Feature Extraction for Ocean Bathymetric Maps Using Sparse Coding
por: Yutani, Taku, et al.
Publicado: (2022) -
Wearable super-resolution muscle–machine interfacing
por: Wang, Huxi, et al.
Publicado: (2022)