Cargando…

Butyrate potentiates Enterococcus faecalis lipoteichoic acid-induced inflammasome activation via histone deacetylase inhibition

Enterococcus faecalis, a Gram-positive opportunistic pathogen having lipoteichoic acid (LTA) as a major virulence factor, is closely associated with refractory apical periodontitis. Short-chain fatty acids (SCFAs) are found in the apical lesion and may affect inflammatory responses induced by E. fae...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Ok-Jin, Ha, Ye-Eun, Sim, Ju-Ri, Lee, Dongwook, Lee, Eun-Hye, Kim, Sun-Young, Yun, Cheol-Heui, Han, Seung Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050190/
https://www.ncbi.nlm.nih.gov/pubmed/36977666
http://dx.doi.org/10.1038/s41420-023-01404-2
Descripción
Sumario:Enterococcus faecalis, a Gram-positive opportunistic pathogen having lipoteichoic acid (LTA) as a major virulence factor, is closely associated with refractory apical periodontitis. Short-chain fatty acids (SCFAs) are found in the apical lesion and may affect inflammatory responses induced by E. faecalis. In the current study, we investigated inflammasome activation by E. faecalis LTA (Ef.LTA) and SCFAs in THP-1 cells. Among SCFAs, butyrate in combination with Ef.LTA markedly enhanced caspase-1 activation and IL-1β secretion whereas these were not induced by Ef.LTA or butyrate alone. Notably, LTAs from Streptococcus gordonii, Staphylococcus aureus, and Bacillus subtilis also showed these effects. Activation of TLR2/GPCR, K(+) efflux, and NF-κB were necessary for the IL-1β secretion induced by Ef.LTA/butyrate. The inflammasome complex comprising NLRP3, ASC, and caspase-1 was activated by Ef.LTA/butyrate. In addition, caspase-4 inhibitor diminished IL-1β cleavage and release, indicating that non-canonical activation of the inflammasome is also involved. Ef.LTA/butyrate induced Gasdermin D cleavage, but not the release of the pyroptosis marker, lactate dehydrogenase. This indicated that Ef.LTA/butyrate induces IL-1β production without cell death. Trichostatin A, a histone deacetylase (HDAC) inhibitor, enhanced Ef.LTA/butyrate-induced IL-1β production, indicating that HDAC is engaged in the inflammasome activation. Furthermore, Ef.LTA and butyrate synergistically induced the pulp necrosis that accompanies IL-1β expression in the rat apical periodontitis model. Taken all these results together, Ef.LTA in the presence of butyrate is suggested to facilitate both canonical- and non-canonical inflammasome activation in macrophages via HDAC inhibition. This potentially contributes to dental inflammatory diseases such as apical periodontitis, particularly associated with Gram-positive bacterial infection.