Cargando…
Overlap in meaning is a stronger predictor of semantic activation in GPT-3 than in humans
Modern large language models generate texts that are virtually indistinguishable from those written by humans and achieve near-human performance in comprehension and reasoning tests. Yet, their complexity makes it difficult to explain and predict their functioning. We examined a state-of-the-art lan...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050205/ https://www.ncbi.nlm.nih.gov/pubmed/36977744 http://dx.doi.org/10.1038/s41598-023-32248-6 |
Sumario: | Modern large language models generate texts that are virtually indistinguishable from those written by humans and achieve near-human performance in comprehension and reasoning tests. Yet, their complexity makes it difficult to explain and predict their functioning. We examined a state-of-the-art language model (GPT-3) using lexical decision tasks widely used to study the structure of semantic memory in humans. The results of four analyses showed that GPT-3’s patterns of semantic activation are broadly similar to those observed in humans, showing significantly higher semantic activation in related (e.g., “lime–lemon”) word pairs than in other-related (e.g., “sour–lemon”) or unrelated (e.g., “tourist–lemon”) word pairs. However, there are also significant differences between GPT-3 and humans. GPT-3’s semantic activation is better predicted by similarity in words’ meaning (i.e., semantic similarity) rather than their co-occurrence in the language (i.e., associative similarity). This suggests that GPT-3’s semantic network is organized around word meaning rather than their co-occurrence in text. |
---|