Cargando…
Effect of time windows in LSTM networks for EEG-based BCIs
People with impaired motor function could be helped by an effective brain–computer interface (BCI) based on a real-time electroencephalogram (EEG) and artificial intelligence algorithms. However, current methodologies for interpreting patient instructions from an EEG are not accurate enough to be co...
Autores principales: | Martín-Chinea, K., Ortega, J., Gómez-González, J. F., Pereda, E., Toledo, J., Acosta, L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050242/ https://www.ncbi.nlm.nih.gov/pubmed/37007196 http://dx.doi.org/10.1007/s11571-022-09832-z |
Ejemplares similares
-
Cognitive-Based EEG BCIs and Human Brain-Robot Interactions
por: Li, Wei, et al.
Publicado: (2017) -
A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs
por: Habibzadeh, Hadi, et al.
Publicado: (2021) -
A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control
por: Padfield, Natasha, et al.
Publicado: (2022) -
Improving Odometric Model Performance Based on LSTM Networks
por: Fariña, Bibiana, et al.
Publicado: (2023) -
Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review
por: Palumbo, Arrigo, et al.
Publicado: (2021)