Cargando…
A clinical–radiomics model based on noncontrast computed tomography to predict hemorrhagic transformation after stroke by machine learning: a multicenter study
OBJECTIVE: To build a clinical–radiomics model based on noncontrast computed tomography images to identify the risk of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT). MATERIALS AND METHODS: A total of 517 consecutive patients wit...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050271/ https://www.ncbi.nlm.nih.gov/pubmed/36977913 http://dx.doi.org/10.1186/s13244-023-01399-5 |