Cargando…
Novel methods for elucidating modality importance in multimodal electrophysiology classifiers
INTRODUCTION: Multimodal classification is increasingly common in electrophysiology studies. Many studies use deep learning classifiers with raw time-series data, which makes explainability difficult, and has resulted in relatively few studies applying explainability methods. This is concerning beca...
Autores principales: | Ellis, Charles A., Sendi, Mohammad S. E., Zhang, Rongen, Carbajal, Darwin A., Wang, May D., Miller, Robyn L., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050434/ https://www.ncbi.nlm.nih.gov/pubmed/37006636 http://dx.doi.org/10.3389/fninf.2023.1123376 |
Ejemplares similares
-
NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS
por: Ellis, Charles A., et al.
Publicado: (2023) -
Two-step clustering-based pipeline for big dynamic functional network connectivity data
por: Sendi, Mohammad S. E., et al.
Publicado: (2022) -
A Systematic Approach for Explaining Time and Frequency Features Extracted by Convolutional Neural Networks From Raw Electroencephalography Data
por: Ellis, Charles A., et al.
Publicado: (2022) -
Explainable Fuzzy Clustering Framework Reveals Divergent Default Mode Network Connectivity Dynamics in Schizophrenia
por: Ellis, Charles A., et al.
Publicado: (2023) -
A Novel Explainable Fuzzy Clustering Approach for fMRI Dynamic Functional Network Connectivity Analysis
por: Ellis, Charles A., et al.
Publicado: (2023)