Cargando…

huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data

Variance of gene expression is intrinsic to any given natural population. Here, we present a protocol to analyze this variance using a conditional quasi loss- and gain-of-function approach. The huva (human variation) package takes advantage of population-scale multi-omics data to infer gene function...

Descripción completa

Detalles Bibliográficos
Autores principales: Aschenbrenner, Anna C., Bonaguro, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050770/
https://www.ncbi.nlm.nih.gov/pubmed/36964906
http://dx.doi.org/10.1016/j.xpro.2023.102193
_version_ 1785014707284869120
author Aschenbrenner, Anna C.
Bonaguro, Lorenzo
author_facet Aschenbrenner, Anna C.
Bonaguro, Lorenzo
author_sort Aschenbrenner, Anna C.
collection PubMed
description Variance of gene expression is intrinsic to any given natural population. Here, we present a protocol to analyze this variance using a conditional quasi loss- and gain-of-function approach. The huva (human variation) package takes advantage of population-scale multi-omics data to infer gene function and the relationship between phenotype and gene expression. We describe the steps for setting up the huva workspace, formatting datasets, performing huva experiments, and exporting data. For complete details on the use and execution of this protocol, please refer to Bonaguro et al. (2022).(1)
format Online
Article
Text
id pubmed-10050770
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-100507702023-03-30 huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data Aschenbrenner, Anna C. Bonaguro, Lorenzo STAR Protoc Protocol Variance of gene expression is intrinsic to any given natural population. Here, we present a protocol to analyze this variance using a conditional quasi loss- and gain-of-function approach. The huva (human variation) package takes advantage of population-scale multi-omics data to infer gene function and the relationship between phenotype and gene expression. We describe the steps for setting up the huva workspace, formatting datasets, performing huva experiments, and exporting data. For complete details on the use and execution of this protocol, please refer to Bonaguro et al. (2022).(1) Elsevier 2023-03-24 /pmc/articles/PMC10050770/ /pubmed/36964906 http://dx.doi.org/10.1016/j.xpro.2023.102193 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Aschenbrenner, Anna C.
Bonaguro, Lorenzo
huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_full huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_fullStr huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_full_unstemmed huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_short huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_sort huva: a human variation analysis framework to predict gene perturbation from population-scale multi-omics data
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050770/
https://www.ncbi.nlm.nih.gov/pubmed/36964906
http://dx.doi.org/10.1016/j.xpro.2023.102193
work_keys_str_mv AT aschenbrennerannac huvaahumanvariationanalysisframeworktopredictgeneperturbationfrompopulationscalemultiomicsdata
AT bonagurolorenzo huvaahumanvariationanalysisframeworktopredictgeneperturbationfrompopulationscalemultiomicsdata