Cargando…
Modeling COVID-19 disease processes by remote elicitation of causal Bayesian networks from medical experts
BACKGROUND: COVID-19 is a new multi-organ disease causing considerable worldwide morbidity and mortality. While many recognized pathophysiological mechanisms are involved, their exact causal relationships remain opaque. Better understanding is needed for predicting their progression, targeting thera...
Autores principales: | Mascaro, Steven, Wu, Yue, Woodberry, Owen, Nyberg, Erik P., Pearson, Ross, Ramsay, Jessica A., Mace, Ariel O., Foley, David A., Snelling, Thomas L., Nicholson, Ann E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050813/ https://www.ncbi.nlm.nih.gov/pubmed/36991342 http://dx.doi.org/10.1186/s12874-023-01856-1 |
Ejemplares similares
-
Bridging the gaps in test interpretation of SARS-CoV-2 through Bayesian network modelling
por: Wu, Yue, et al.
Publicado: (2021) -
BARD: A Structured Technique for Group Elicitation of Bayesian Networks to Support Analytic Reasoning
por: Nyberg, Erik P., et al.
Publicado: (2021) -
Predicting the causative pathogen among children with pneumonia using a causal Bayesian network
por: Wu, Yue, et al.
Publicado: (2023) -
Urinary tract infections in children: building a causal model-based decision support tool for diagnosis with domain knowledge and prospective data
por: Ramsay, Jessica A., et al.
Publicado: (2022) -
Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways
por: Knol, Anne B, et al.
Publicado: (2009)