Cargando…
An adversarial training framework for mitigating algorithmic biases in clinical machine learning
Machine learning is becoming increasingly prominent in healthcare. Although its benefits are clear, growing attention is being given to how these tools may exacerbate existing biases and disparities. In this study, we introduce an adversarial training framework that is capable of mitigating biases t...
Autores principales: | Yang, Jenny, Soltan, Andrew A. S., Eyre, David W., Yang, Yang, Clifton, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050816/ https://www.ncbi.nlm.nih.gov/pubmed/36991077 http://dx.doi.org/10.1038/s41746-023-00805-y |
Ejemplares similares
-
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
por: Yang, Jenny, et al.
Publicado: (2023) -
Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening
por: Yang, Jenny, et al.
Publicado: (2022) -
Robust machine learning algorithms and systems for detection and mitigation of adversarial attacks and anomalies: proceedings of a workshop
por: Ali, Dionna, et al.
Publicado: (2019) -
Mitigating bias in machine learning for medicine
por: Vokinger, Kerstin N., et al.
Publicado: (2021) -
Adversarial machine learning
por: Vorobeychik, Yevgeniy, et al.
Publicado: (2018)