Cargando…
Low-Carbohydrate Diet Modulates Glucose–Lipid Utilization in Skeletal Muscle of Diabetic Mice
Type 2 diabetes is associated with many complications, including skeletal muscle atrophy. Ketogenic diets and low-carbohydrate diets (LCD) have recently been introduced as dietary interventions in patients with diabetes, but their effects on glucose and lipid metabolism in skeletal muscle have not b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051166/ https://www.ncbi.nlm.nih.gov/pubmed/36986243 http://dx.doi.org/10.3390/nu15061513 |
Sumario: | Type 2 diabetes is associated with many complications, including skeletal muscle atrophy. Ketogenic diets and low-carbohydrate diets (LCD) have recently been introduced as dietary interventions in patients with diabetes, but their effects on glucose and lipid metabolism in skeletal muscle have not been studied. In the current study, we compared the effects of LCD and ketogenic diet on glucose and lipid metabolism in skeletal muscle of diabetic mice. C57BL/6J mice with type 2 diabetes, constructed by a high-fat diet combined with streptozotocin, were fed a standard diet, a high-fat diet, an LCD, or a ketogenic diet for 14 weeks, respectively. Here, we found that the LCD, rather than the ketogenic diet, retained skeletal muscle weight and suppressed the expression of atrophy-related genes in diabetic mice. In addition, the LCD had more glycolytic/type IIb myofiber content and inhibited forkhead box O1 and pyruvate dehydrogenase kinase 4 expression, leading to improved glucose utilization. However, the ketogenic diet maintained more oxidative/type I myofibers. Moreover, compared with the ketogenic diet, the LCD decreased intramuscular triglycerides content and muscle lipolysis, suggesting improvement in lipid metabolism. Taken together, these data suggested that the LCD improved glucose utilization, and inhibited lipolysis and atrophy in skeletal muscle of diabetic mice, while the ketogenic diet showed metabolic disorders in skeletal muscle. |
---|