Cargando…
Modeling Behavior and Vaccine Hesitancy Using Twitter-Derived US Population Sentiment during the COVID-19 Pandemic to Predict Daily Vaccination Inoculations
The sentiment analysis of social media for predicting behavior during a pandemic is seminal in nature. As an applied contribution, we present sentiment-based regression models for predicting the United States COVID-19 first dose, second dose, and booster daily inoculations from 1 June 2021 to 31 Mar...
Autores principales: | Daghriri, Talal, Proctor, Michael, Matthews, Sarah, Bashiri, Abdullateef H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051180/ https://www.ncbi.nlm.nih.gov/pubmed/36992293 http://dx.doi.org/10.3390/vaccines11030709 |
Ejemplares similares
-
Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration
por: Daghriri, Talal, et al.
Publicado: (2022) -
Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset
por: Qorib, Miftahul, et al.
Publicado: (2023) -
Examining Vaccine Sentiment on Twitter and Local Vaccine Deployment during the COVID-19 Pandemic
por: Martinez, Lourdes S., et al.
Publicado: (2022) -
An analysis of COVID-19 vaccine sentiments and opinions on Twitter
por: Yousefinaghani, Samira, et al.
Publicado: (2021) -
Public Figure Vaccination Rhetoric and Vaccine Hesitancy: Retrospective Twitter Analysis
por: Honcharov, Vlad, et al.
Publicado: (2023)