Cargando…

High-Throughput CAMP Assay (HiTCA): A Novel Tool for Evaluating the Vitamin D-Dependent Antimicrobial Response

Vitamin D is known to modulate human immune responses, and vitamin D deficiency is associated with increased susceptibility to infection. However, what constitutes sufficient levels or whether vitamin D is useful as an adjuvant therapeutic is debated, much in part because of inadequate elucidation o...

Descripción completa

Detalles Bibliográficos
Autores principales: Gottlieb, Carter, Henrich, Mason, Liu, Philip T., Yacoubian, Vahe, Wang, Jeffery, Chun, Rene, Adams, John S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051182/
https://www.ncbi.nlm.nih.gov/pubmed/36986109
http://dx.doi.org/10.3390/nu15061380
Descripción
Sumario:Vitamin D is known to modulate human immune responses, and vitamin D deficiency is associated with increased susceptibility to infection. However, what constitutes sufficient levels or whether vitamin D is useful as an adjuvant therapeutic is debated, much in part because of inadequate elucidation of mechanisms underlying vitamin D’s immune modulatory function. Cathelicidin antimicrobial peptide (CAMP) has potent broad-spectrum activity, and the CAMP gene is regulated in human innate immune cells by active 1,25(OH)(2)D(3), a product of hydroxylation of inactive 25(OH)D(3) by CYP27B1-hydroxylase. We developed a CRISPR/Cas9-edited human monocyte-macrophage cell line containing the mCherry fluorescent reporter gene at the 3′ end of the endogenous CAMP gene. The High Throughput CAMP Assay (HiTCA) developed here is a novel tool for evaluating CAMP expression in a stable cell line that is scalable for a high-throughput workflow. Application of HiTCA to serum samples from a small number of human donors (n = 10) showed individual differences in CAMP induction that were not fully accounted for by the serum vitamin D metabolite status of the host. As such, HiTCA may be a useful tool that can advance our understanding of the human vitamin D-dependent antimicrobial response, which is being increasingly appreciated for its complexity.