Cargando…
Machine Learning to Predict the Adsorption Capacity of Microplastics
Nowadays, there is an extensive production and use of plastic materials for different industrial activities. These plastics, either from their primary production sources or through their own degradation processes, can contaminate ecosystems with micro- and nanoplastics. Once in the aquatic environme...
Autores principales: | Astray, Gonzalo, Soria-Lopez, Anton, Barreiro, Enrique, Mejuto, Juan Carlos, Cid-Samamed, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051191/ https://www.ncbi.nlm.nih.gov/pubmed/36985954 http://dx.doi.org/10.3390/nano13061061 |
Ejemplares similares
-
QSPR models for predicting the adsorption capacity for microplastics of polyethylene, polypropylene and polystyrene
por: Li, Miao, et al.
Publicado: (2020) -
Prediction Models to Control Aging Time in Red Wine
por: Astray, Gonzalo, et al.
Publicado: (2019) -
Essential Oils as Antimicrobials in Crop Protection
por: Alonso-Gato, María, et al.
Publicado: (2021) -
Recent Advances in the Aggregation Behavior of Nanoplastics in Aquatic Systems
por: Cid-Samamed, Antonio, et al.
Publicado: (2023) -
Unveiling the drives behind tetracycline adsorption capacity with biochar through machine learning
por: Zhang, Pengyan, et al.
Publicado: (2023)