Cargando…
A YOLOv6-Based Improved Fire Detection Approach for Smart City Environments
Authorities and policymakers in Korea have recently prioritized improving fire prevention and emergency response. Governments seek to enhance community safety for residents by constructing automated fire detection and identification systems. This study examined the efficacy of YOLOv6, a system for o...
Autores principales: | Norkobil Saydirasulovich, Saydirasulov, Abdusalomov, Akmalbek, Jamil, Muhammad Kafeel, Nasimov, Rashid, Kozhamzharova, Dinara, Cho, Young-Im |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051218/ https://www.ncbi.nlm.nih.gov/pubmed/36991872 http://dx.doi.org/10.3390/s23063161 |
Ejemplares similares
-
An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images
por: Saydirasulovich, Saydirasulov Norkobil, et al.
Publicado: (2023) -
Fire Detection and Notification Method in Ship Areas Using Deep Learning and Computer Vision Approaches
por: Avazov, Kuldoshbay, et al.
Publicado: (2023) -
Automatic Fire Detection and Notification System Based on Improved YOLOv4 for the Blind and Visually Impaired
por: Mukhiddinov, Mukhriddin, et al.
Publicado: (2022) -
An Improvement of the Fire Detection and Classification Method Using YOLOv3 for Surveillance Systems
por: Abdusalomov, Akmalbek, et al.
Publicado: (2021) -
Real-Time Deep Learning-Based Drowsiness Detection: Leveraging Computer-Vision and Eye-Blink Analyses for Enhanced Road Safety
por: Safarov, Furkat, et al.
Publicado: (2023)