Cargando…
Vertical Sleeve Gastrectomy Offers Protection against Disturbed Flow-Induced Atherosclerosis in High-Fat Diet-Fed Mice
Bariatric surgery reduces body weight, enhances metabolic and diabetic control, and improves outcomes on obesity-related comorbidities. However, the mechanisms mediating this protection against cardiovascular diseases remain unclear. We investigated the effect of sleeve gastrectomy (SG) on vascular...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051344/ https://www.ncbi.nlm.nih.gov/pubmed/36982743 http://dx.doi.org/10.3390/ijms24065669 |
Sumario: | Bariatric surgery reduces body weight, enhances metabolic and diabetic control, and improves outcomes on obesity-related comorbidities. However, the mechanisms mediating this protection against cardiovascular diseases remain unclear. We investigated the effect of sleeve gastrectomy (SG) on vascular protection in response to shear stress-induced atherosclerosis using an overweighted and carotid artery ligation mouse model. Eight-week-old male wild-type mice (C57BL/6J) were fed a high-fat diet (HFD) for two weeks to induce weight gain and dysmetabolism. SG was performed in HFD-fed mice. Two weeks after the SG procedure, partial carotid-artery ligation was performed to promote disturbed flow-induced atherosclerosis. Compared with the control mice, HFD-fed wild-type mice exhibited increased body weight, total cholesterol level, hemoglobin A1c, and enhanced insulin resistance; SG significantly reversed these adverse effects. As expected, HFD-fed mice exhibited greater neointimal hyperplasia and atherosclerotic plaques than the control group, and the SG procedure attenuated HFD-promoted ligation-induced neointimal hyperplasia and arterial elastin fragmentation. Besides, HFD promoted ligation-induced macrophage infiltration, matrix metalloproteinase-9 expression, upregulation of inflammatory cytokines, and increased vascular endothelial growth factor secretion. SG significantly reduced the above-mentioned effects. Moreover, HFD restriction partially reversed the intimal hyperplasia caused by carotid artery ligation; however, this protective effect was significantly lower than that observed in SG-operated mice. Our study demonstrated that HFD deteriorates shear stress-induced atherosclerosis and SG mitigates vascular remodeling, and this protective effect was not comparable in HFD restriction group. These findings provide a rationale for using bariatric surgery to counter atherosclerosis in morbid obesity. |
---|