Cargando…
Optimized EWT-Seq2Seq-LSTM with Attention Mechanism to Insulators Fault Prediction
Insulators installed outdoors are vulnerable to the accumulation of contaminants on their surface, which raise their conductivity and increase leakage current until a flashover occurs. To improve the reliability of the electrical power system, it is possible to evaluate the development of the fault...
Autores principales: | Klaar, Anne Carolina Rodrigues, Stefenon, Stefano Frizzo, Seman, Laio Oriel, Mariani, Viviana Cocco, Coelho, Leandro dos Santos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051368/ https://www.ncbi.nlm.nih.gov/pubmed/36991913 http://dx.doi.org/10.3390/s23063202 |
Ejemplares similares
-
Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model
por: Borré, Andressa, et al.
Publicado: (2023) -
Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction
por: Stefenon, Stefano Frizzo, et al.
Publicado: (2023) -
Video-Based Human Activity Recognition Using Deep Learning Approaches
por: Surek, Guilherme Augusto Silva, et al.
Publicado: (2023) -
Wavelet LSTM for Fault Forecasting in Electrical Power Grids
por: Branco, Nathielle Waldrigues, et al.
Publicado: (2022) -
Static Attitude Determination Using Convolutional Neural Networks
por: dos Santos, Guilherme Henrique, et al.
Publicado: (2021)