Cargando…
Defect Detection in Printed Circuit Boards Using Semi-Supervised Learning
Defect inspection is essential in the semiconductor industry to fabricate printed circuit boards (PCBs) with minimum defect rates. However, conventional inspection systems are labor-intensive and time-consuming. In this study, a semi-supervised learning (SSL)-based model called PCB_SS was developed....
Autores principales: | Pham, Thi Tram Anh, Thoi, Do Kieu Trang, Choi, Hyohoon, Park, Suhyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051373/ https://www.ncbi.nlm.nih.gov/pubmed/36991958 http://dx.doi.org/10.3390/s23063246 |
Ejemplares similares
-
End-to-end deep learning framework for printed circuit board manufacturing defect classification
por: Bhattacharya, Abhiroop, et al.
Publicado: (2022) -
Semi-continuous dielectrophoretic separation at high throughput using printed circuit boards
por: Giesler, Jasper, et al.
Publicado: (2023) -
Printed Circuit Board Defect Detection Using Deep Learning via A Skip-Connected Convolutional Autoencoder
por: Kim, Jungsuk, et al.
Publicado: (2021) -
Primer: printed circuit boards
por: Argyle, Andrew
Publicado: (2009) -
Lightweight Network DCR-YOLO for Surface Defect Detection on Printed Circuit Boards
por: Jiang, Yuanyuan, et al.
Publicado: (2023)