Cargando…
Tool Health Monitoring of a Milling Process Using Acoustic Emissions and a ResNet Deep Learning Model
In the industrial sector, tool health monitoring has taken on significant importance due to its ability to save labor costs, time, and waste. The approach used in this research uses spectrograms of airborne acoustic emission data and a convolutional neural network variation called the Residual Netwo...
Autores principales: | Ahmed, Mustajab, Kamal, Khurram, Ratlamwala, Tahir Abdul Hussain, Hussain, Ghulam, Alqahtani, Mejdal, Alkahtani, Mohammed, Alatefi, Moath, Alzabidi, Ayoub |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051468/ https://www.ncbi.nlm.nih.gov/pubmed/36991794 http://dx.doi.org/10.3390/s23063084 |
Ejemplares similares
-
Clean Energy Based Multigeneration System for Sustainable Cities: Thermodynamic, and Stability Analyses
por: Bhatti, Uzair, et al.
Publicado: (2023) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022) -
MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification
por: Huang, Xingru, et al.
Publicado: (2022) -
ResNet-AE for Radar Signal Anomaly Detection
por: Cheng, Donghang, et al.
Publicado: (2022) -
Protein Contact Map Prediction Based on ResNet and DenseNet
por: Li, Zhong, et al.
Publicado: (2020)