Cargando…
Reduced Order Modeling of Nonlinear Vibrating Multiphysics Microstructures with Deep Learning-Based Approaches
Micro-electro-mechanical-systems are complex structures, often involving nonlinearites of geometric and multiphysics nature, that are used as sensors and actuators in countless applications. Starting from full-order representations, we apply deep learning techniques to generate accurate, efficient,...
Autores principales: | Gobat, Giorgio, Fresca, Stefania, Manzoni, Andrea, Frangi, Attilio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051645/ https://www.ncbi.nlm.nih.gov/pubmed/36991715 http://dx.doi.org/10.3390/s23063001 |
Ejemplares similares
-
Deep learning-based reduced order models in cardiac electrophysiology
por: Fresca, Stefania, et al.
Publicado: (2020) -
POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium
por: Fresca, Stefania, et al.
Publicado: (2021) -
Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1:2 internal resonance
por: Gobat, Giorgio, et al.
Publicado: (2021) -
Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC
por: Zhan, Zhigang, et al.
Publicado: (2022) -
A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel
por: Zhang, Wenqian, et al.
Publicado: (2022)