Cargando…

A Study on the Synthesis and Proton Transport Behavior of Multilayered ZSM-5 Zeolite Nanosheet Membranes Laminated on Polymer Substrates

Single crystalline ZSM-5 ZNs with thicknesses around 6 nm were obtained by secondary growth of silicalite nanoparticles using diquaternary bis-1,5(tripropyl ammonium) pentamethylene diiodide (dC(5)) as a structure-directing agent (SDA). The dC(5) could be effectively removed from the ZN pores by eit...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Zishu, Iskhakova, Landysh, Sun, Xinhui, Dong, Junhang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051930/
https://www.ncbi.nlm.nih.gov/pubmed/36984692
http://dx.doi.org/10.3390/membranes13030305
Descripción
Sumario:Single crystalline ZSM-5 ZNs with thicknesses around 6 nm were obtained by secondary growth of silicalite nanoparticles using diquaternary bis-1,5(tripropyl ammonium) pentamethylene diiodide (dC(5)) as a structure-directing agent (SDA). The dC(5) could be effectively removed from the ZN pores by either high-temperature calcination or UV irradiation in air at room temperature but not by the piranha solution treatment. Ultrathin ZN-laminated membranes (ZNLMs) were fabricated by sandwiching a UV-activated multilayered ZN film between two recast Nafion(®) layers (ZNLM-Nafion) and by filtration coating from a suspension of thermally activated ZNs on a nonionic porous PVDF (ZNLM-PVDF). The ZNLMs on both supports demonstrated the ability of highly proton-selective ion conduction with low resistances in aqueous electrolyte solutions. The ZNLM-PVDF with PVDF binder was structurally stable, and it achieved a comparably low ASR but much higher proton selectivity compared with a Nafion membrane of same overall thickness. However, detachment between the ZNLM and Nafion layers occurred when the ZNLM-Nafion operated in aqueous electrolyte solutions. Results of this study show the potential for developing ZNLMs as efficient proton-conducting membranes without using expensive ionic polymer matrices. However, the development of polymer-supported ZNLMs is hindered by the current inefficiency in preparing well-dispersed suspensions of open-pore ZNs. Future development of efficient methods for synthesizing open-pore ZNs in dispersed states is key to realizing high-performance ZNLMs on polymers.