Cargando…

Impact of Polyploidy Induction for Salinity Stress Mitigation in Soybean (Glycine max L. Merrill)

Polyploidy induction is recognized as one of the major evolutionary processes leading to remarkable morphological, physiological, and genetic variations in plants. Soybean (Glycine max L.), also known as soja bean or soya bean, is an annual leguminous crop of the pea family (Fabaceae) that shares a...

Descripción completa

Detalles Bibliográficos
Autor principal: Mangena, Phetole
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051967/
https://www.ncbi.nlm.nih.gov/pubmed/36987050
http://dx.doi.org/10.3390/plants12061356
Descripción
Sumario:Polyploidy induction is recognized as one of the major evolutionary processes leading to remarkable morphological, physiological, and genetic variations in plants. Soybean (Glycine max L.), also known as soja bean or soya bean, is an annual leguminous crop of the pea family (Fabaceae) that shares a paleopolypoidy history, dating back to approximately 56.5 million years ago with other leguminous crops such as cowpea and other Glycine specific polyploids. This crop has been documented as one of the polyploid complex species among legumes whose gene evolution and resultant adaptive growth characteristics following induced polyploidization has not been fully explored. Furthermore, no successfully established in vivo or in vitro based polyploidy induction protocols have been reported to date, particularly, with the intention to develop mutant plants showing strong resistance to abiotic salinity stress. This review, therefore, describes the role of synthetic polyploid plant production in soybean for the mitigation of high soil salt stress levels and how this evolving approach could be used to further enhance the nutritional, pharmaceutical and economic industrial value of soybeans. This review also addresses the challenges involved during the polyploidization process.