Cargando…
Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants
Ultraviolet (UV) radiation responses of extremophilic and archaeal microorganisms are of interest from evolutionary, physiological, and astrobiological perspectives. Previous studies determined that the halophilic archaeon, Halobacterium sp. NRC-1, which survives in multiple extremes, is highly tole...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052015/ https://www.ncbi.nlm.nih.gov/pubmed/36985181 http://dx.doi.org/10.3390/microorganisms11030607 |
_version_ | 1785015031073603584 |
---|---|
author | Nag, Sagorika DasSarma, Priya Crowley, David J. Hamawi, Rafael Tepper, Samantha Anton, Brian P. Guzmán, Daniel DasSarma, Shiladitya |
author_facet | Nag, Sagorika DasSarma, Priya Crowley, David J. Hamawi, Rafael Tepper, Samantha Anton, Brian P. Guzmán, Daniel DasSarma, Shiladitya |
author_sort | Nag, Sagorika |
collection | PubMed |
description | Ultraviolet (UV) radiation responses of extremophilic and archaeal microorganisms are of interest from evolutionary, physiological, and astrobiological perspectives. Previous studies determined that the halophilic archaeon, Halobacterium sp. NRC-1, which survives in multiple extremes, is highly tolerant of UV radiation. Here, Halobacterium sp. NRC-1 UV tolerance was compared to taxonomically diverse Haloarchaea isolated from high-elevation salt flats, surface warm and cold hypersaline lakes, and subsurface Permian halite deposits. Haloterrigena/Natrinema spp. from subsurface halite deposits were the least tolerant after exposure to photoreactivating light. This finding was attributed to deviation of amino acid residues in key positions in the DNA photolyase enzyme or to the complete absence of the photolyase gene. Several Halobacterium, Halorubrum and Salarchaeum species from surface environments exposed to high solar irradiance were found to be the most UV tolerant, and Halorubrum lacusprofundi from lake sediment was of intermediate character. These results indicate that high UV tolerance is not a uniform character trait of Haloarchaea and is likely reflective of UV exposure experienced in their environment. This is the first report correlating natural UV tolerance to photolyase gene functionality among Haloarchaea and provides insights into their survival in ancient halite deposits and potentially on the surface of Mars. |
format | Online Article Text |
id | pubmed-10052015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100520152023-03-30 Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants Nag, Sagorika DasSarma, Priya Crowley, David J. Hamawi, Rafael Tepper, Samantha Anton, Brian P. Guzmán, Daniel DasSarma, Shiladitya Microorganisms Article Ultraviolet (UV) radiation responses of extremophilic and archaeal microorganisms are of interest from evolutionary, physiological, and astrobiological perspectives. Previous studies determined that the halophilic archaeon, Halobacterium sp. NRC-1, which survives in multiple extremes, is highly tolerant of UV radiation. Here, Halobacterium sp. NRC-1 UV tolerance was compared to taxonomically diverse Haloarchaea isolated from high-elevation salt flats, surface warm and cold hypersaline lakes, and subsurface Permian halite deposits. Haloterrigena/Natrinema spp. from subsurface halite deposits were the least tolerant after exposure to photoreactivating light. This finding was attributed to deviation of amino acid residues in key positions in the DNA photolyase enzyme or to the complete absence of the photolyase gene. Several Halobacterium, Halorubrum and Salarchaeum species from surface environments exposed to high solar irradiance were found to be the most UV tolerant, and Halorubrum lacusprofundi from lake sediment was of intermediate character. These results indicate that high UV tolerance is not a uniform character trait of Haloarchaea and is likely reflective of UV exposure experienced in their environment. This is the first report correlating natural UV tolerance to photolyase gene functionality among Haloarchaea and provides insights into their survival in ancient halite deposits and potentially on the surface of Mars. MDPI 2023-02-28 /pmc/articles/PMC10052015/ /pubmed/36985181 http://dx.doi.org/10.3390/microorganisms11030607 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nag, Sagorika DasSarma, Priya Crowley, David J. Hamawi, Rafael Tepper, Samantha Anton, Brian P. Guzmán, Daniel DasSarma, Shiladitya Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants |
title | Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants |
title_full | Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants |
title_fullStr | Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants |
title_full_unstemmed | Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants |
title_short | Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants |
title_sort | genomic analysis of haloarchaea from diverse environments, including permian halite, reveals diversity of ultraviolet radiation survival and dna photolyase gene variants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052015/ https://www.ncbi.nlm.nih.gov/pubmed/36985181 http://dx.doi.org/10.3390/microorganisms11030607 |
work_keys_str_mv | AT nagsagorika genomicanalysisofhaloarchaeafromdiverseenvironmentsincludingpermianhaliterevealsdiversityofultravioletradiationsurvivalanddnaphotolyasegenevariants AT dassarmapriya genomicanalysisofhaloarchaeafromdiverseenvironmentsincludingpermianhaliterevealsdiversityofultravioletradiationsurvivalanddnaphotolyasegenevariants AT crowleydavidj genomicanalysisofhaloarchaeafromdiverseenvironmentsincludingpermianhaliterevealsdiversityofultravioletradiationsurvivalanddnaphotolyasegenevariants AT hamawirafael genomicanalysisofhaloarchaeafromdiverseenvironmentsincludingpermianhaliterevealsdiversityofultravioletradiationsurvivalanddnaphotolyasegenevariants AT teppersamantha genomicanalysisofhaloarchaeafromdiverseenvironmentsincludingpermianhaliterevealsdiversityofultravioletradiationsurvivalanddnaphotolyasegenevariants AT antonbrianp genomicanalysisofhaloarchaeafromdiverseenvironmentsincludingpermianhaliterevealsdiversityofultravioletradiationsurvivalanddnaphotolyasegenevariants AT guzmandaniel genomicanalysisofhaloarchaeafromdiverseenvironmentsincludingpermianhaliterevealsdiversityofultravioletradiationsurvivalanddnaphotolyasegenevariants AT dassarmashiladitya genomicanalysisofhaloarchaeafromdiverseenvironmentsincludingpermianhaliterevealsdiversityofultravioletradiationsurvivalanddnaphotolyasegenevariants |