Cargando…

Catalytic Steam-Assisted Pyrolysis of PET for the Upgrading of TPA

Compared with conventional pyrolysis, steam-assisted pyrolysis of polyethylene terephthalate (PET) can effectively eliminate char and upgrade terephthalic acid (TPA). However, during steam-assisted pyrolysis of PET, the degree of cracking still varies greatly, and while some of the product is excess...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Kuntong, Li, Yi, Zhang, Ruiqi, Wang, Nan, Liu, Junhong, Hou, Wenxia, Zhou, Qing, Lu, Xingmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052107/
https://www.ncbi.nlm.nih.gov/pubmed/36984242
http://dx.doi.org/10.3390/ma16062362
Descripción
Sumario:Compared with conventional pyrolysis, steam-assisted pyrolysis of polyethylene terephthalate (PET) can effectively eliminate char and upgrade terephthalic acid (TPA). However, during steam-assisted pyrolysis of PET, the degree of cracking still varies greatly, and while some of the product is excessively cracked to gas, the other part is still insufficiently cracked. In addition, these two types of products seriously affect the yield and purity of TPA. To further enhance the TPA, an attempt was made to reduce these impurities simultaneously by synergistic catalysis among the different components of the metal–acid catalyst. Through a series of experiments, Pt@Hzsm-5 was screened as the optimal catalyst. In the catalytic steam-assisted pyrolysis of PET, the optimum reaction temperature decreased to 400 °C, the calculated yield of TPA increased to 98.23 wt%, and the purity increased to 92.2%. The Pt@Hzsm-5 could be recycled three times with no significant decrease in the obtained yield of TPA. The catalytic mechanism of the Pt@Hzsm-5 was investigated through the analysis of the products and isotope tracing experiments. The Pt catalyzed the hydrogen transfer reaction between the water molecules and PET molecules, which inhibited the excessive cracking of TPA by improving the hydrogen transfer efficiency, reduced the generation of gaseous products, and improved the calculated yield of TPA. In contrast, the Hzsm-5 catalyzed the reaction of monovinyl ester cracking to TPA, effectively reducing the impurities in the solid product, increasing the olefin yield, and improving the purity of TPA. This discovery not only clarifies the synergistic catalytic effect of the Pt@Hzsm-5 in the steam-assisted pyrolysis of the PET reaction but also lays the foundation for further screening of other inexpensive metal–acid catalysts. This is of great significance to realize the industrial application of TPA preparation by PET pyrolysis.