Cargando…
Applications of LiDAR in Agriculture and Future Research Directions
Light detection and ranging (LiDAR) sensors have accrued an ever-increasing presence in the agricultural sector due to their non-destructive mode of capturing data. LiDAR sensors emit pulsed light waves that return to the sensor upon bouncing off surrounding objects. The distances that the pulses tr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052112/ https://www.ncbi.nlm.nih.gov/pubmed/36976108 http://dx.doi.org/10.3390/jimaging9030057 |
_version_ | 1785015074637742080 |
---|---|
author | Debnath, Sourabhi Paul, Manoranjan Debnath, Tanmoy |
author_facet | Debnath, Sourabhi Paul, Manoranjan Debnath, Tanmoy |
author_sort | Debnath, Sourabhi |
collection | PubMed |
description | Light detection and ranging (LiDAR) sensors have accrued an ever-increasing presence in the agricultural sector due to their non-destructive mode of capturing data. LiDAR sensors emit pulsed light waves that return to the sensor upon bouncing off surrounding objects. The distances that the pulses travel are calculated by measuring the time for all pulses to return to the source. There are many reported applications of the data obtained from LiDAR in agricultural sectors. LiDAR sensors are widely used to measure agricultural landscaping and topography and the structural characteristics of trees such as leaf area index and canopy volume; they are also used for crop biomass estimation, phenotype characterisation, crop growth, etc. A LiDAR-based system and LiDAR data can also be used to measure spray drift and detect soil properties. It has also been proposed in the literature that crop damage detection and yield prediction can also be obtained with LiDAR data. This review focuses on different LiDAR-based system applications and data obtained from LiDAR in agricultural sectors. Comparisons of aspects of LiDAR data in different agricultural applications are also provided. Furthermore, future research directions based on this emerging technology are also presented in this review. |
format | Online Article Text |
id | pubmed-10052112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100521122023-03-30 Applications of LiDAR in Agriculture and Future Research Directions Debnath, Sourabhi Paul, Manoranjan Debnath, Tanmoy J Imaging Review Light detection and ranging (LiDAR) sensors have accrued an ever-increasing presence in the agricultural sector due to their non-destructive mode of capturing data. LiDAR sensors emit pulsed light waves that return to the sensor upon bouncing off surrounding objects. The distances that the pulses travel are calculated by measuring the time for all pulses to return to the source. There are many reported applications of the data obtained from LiDAR in agricultural sectors. LiDAR sensors are widely used to measure agricultural landscaping and topography and the structural characteristics of trees such as leaf area index and canopy volume; they are also used for crop biomass estimation, phenotype characterisation, crop growth, etc. A LiDAR-based system and LiDAR data can also be used to measure spray drift and detect soil properties. It has also been proposed in the literature that crop damage detection and yield prediction can also be obtained with LiDAR data. This review focuses on different LiDAR-based system applications and data obtained from LiDAR in agricultural sectors. Comparisons of aspects of LiDAR data in different agricultural applications are also provided. Furthermore, future research directions based on this emerging technology are also presented in this review. MDPI 2023-02-24 /pmc/articles/PMC10052112/ /pubmed/36976108 http://dx.doi.org/10.3390/jimaging9030057 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Debnath, Sourabhi Paul, Manoranjan Debnath, Tanmoy Applications of LiDAR in Agriculture and Future Research Directions |
title | Applications of LiDAR in Agriculture and Future Research Directions |
title_full | Applications of LiDAR in Agriculture and Future Research Directions |
title_fullStr | Applications of LiDAR in Agriculture and Future Research Directions |
title_full_unstemmed | Applications of LiDAR in Agriculture and Future Research Directions |
title_short | Applications of LiDAR in Agriculture and Future Research Directions |
title_sort | applications of lidar in agriculture and future research directions |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052112/ https://www.ncbi.nlm.nih.gov/pubmed/36976108 http://dx.doi.org/10.3390/jimaging9030057 |
work_keys_str_mv | AT debnathsourabhi applicationsoflidarinagricultureandfutureresearchdirections AT paulmanoranjan applicationsoflidarinagricultureandfutureresearchdirections AT debnathtanmoy applicationsoflidarinagricultureandfutureresearchdirections |