Cargando…

TMT-Based Proteomic Analysis of Continuous Cropping Response in Codonopsis tangshen Oliv.

The growth and development of Codonopsis tangshen, an important herb used in Chinese traditional medicine, have been seriously affected by continuous cropping obstacles. Therefore, understanding the molecular responses of C. tangshen to continuous cropping is imperative to improve its resistance to...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Xiaogang, Zhou, Wuxian, Wang, Hua, You, Jinwen, Liu, Wenlu, Zhang, Meide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052164/
https://www.ncbi.nlm.nih.gov/pubmed/36983920
http://dx.doi.org/10.3390/life13030765
Descripción
Sumario:The growth and development of Codonopsis tangshen, an important herb used in Chinese traditional medicine, have been seriously affected by continuous cropping obstacles. Therefore, understanding the molecular responses of C. tangshen to continuous cropping is imperative to improve its resistance to continuous cropping obstacles. Here, physiological and biochemical results showed that the levels of chlorophyll and malonaldehyde (MDA) were higher in the continuous cropping (LZ) group compared with those of the non-continuous cropping (FLZ) group, while superoxide dismutase (SOD) content was lower in the LZ group than in the FLZ group. Tandem mass tag (TMT)-based proteomic analysis was performed to investigate the response mechanism to continuous cropping obstacles in C. tangshen. A total of 70 differentially expressed proteins (DEPs) were significantly involved in relevant pathways, including photosynthesis, oxidative phosphorylation, ribosome activity, and secondary metabolites. The results suggest that these DEPs in C. tangshen might play a critical role in response to continuous cropping. These findings could provide scientific basis for improving C. tangshen’s resistance to continuous cropping obstacles.