Cargando…
Computational Reverse-Engineering Analysis for Scattering Experiments for Form Factor and Structure Factor Determination (“P(q) and S(q) CREASE”)
[Image: see text] In this paper, we present an open-source machine learning (ML)-accelerated computational method to analyze small-angle scattering profiles [I(q) vs q] from concentrated macromolecular solutions to simultaneously obtain the form factor P(q) (e.g., dimensions of a micelle) and the st...
Autores principales: | Heil, Christian M., Ma, Yingzhen, Bharti, Bhuvnesh, Jayaraman, Arthi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052275/ https://www.ncbi.nlm.nih.gov/pubmed/37006757 http://dx.doi.org/10.1021/jacsau.2c00697 |
Ejemplares similares
-
Computational Reverse-Engineering Analysis for Scattering
Experiments (CREASE) with Machine Learning Enhancement to Determine
Structure of Nanoparticle Mixtures and Solutions
por: Heil, Christian M., et al.
Publicado: (2022) -
Machine Learning Enhanced Computational Reverse Engineering
Analysis for Scattering Experiments (CREASE) to Determine Structures
in Amphiphilic Polymer Solutions
por: Wessels, Michiel G., et al.
Publicado: (2021) -
Computational Reverse Engineering Analysis for Scattering
Experiments (CREASE) on Vesicles Assembled from Amphiphilic Macromolecular
Solutions
por: Ye, Ziyu, et al.
Publicado: (2021) -
Computational Reverse-Engineering Analysis for Scattering
Experiments of Assembled Binary Mixture of Nanoparticles
por: Heil, Christian M., et al.
Publicado: (2021) -
Synergistic
Role of Temperature and Salinity in Aggregation
of Nonionic Surfactant-Coated Silica Nanoparticles
por: Ma, Yingzhen, et al.
Publicado: (2023)