Cargando…
LASSO and attention-TCN: a concurrent method for indoor particulate matter prediction
Long time exposure to indoor air pollution environments can increase the risk of cardiovascular and respiratory system damage. Most previous studies focus on outdoor air quality, while few studies on indoor air quality. Current neural network-based methods for indoor air quality prediction ignore th...
Autores principales: | Shi, Ting, Yang, Wu, Qi, Ailin, Li, Pengyu, Qiao, Junfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052318/ https://www.ncbi.nlm.nih.gov/pubmed/37363388 http://dx.doi.org/10.1007/s10489-023-04507-6 |
Ejemplares similares
-
Research on Traffic Flow Prediction at Intersections Based on DT-TCN-Attention
por: Zhang, Yulin, et al.
Publicado: (2023) -
Research on Multi-Sensor Fusion Indoor Fire Perception Algorithm Based on Improved TCN
por: Li, Yang, et al.
Publicado: (2022) -
A Complement Method for Magnetic Data Based on TCN-SE Model
por: Chen, Wenqing, et al.
Publicado: (2022) -
Occurrence of polychlorinated terphenyls (PCTs) in indoor particulate matter.
por: Seidel, U, et al.
Publicado: (1996) -
Survey of residential indoor particulate matter measurements 1990–2019
por: Ilacqua, Vito, et al.
Publicado: (2022)