Cargando…
Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer’s disease mouse model
Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer’s disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the micro...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052573/ https://www.ncbi.nlm.nih.gov/pubmed/37006470 http://dx.doi.org/10.3389/fncel.2023.895017 |
_version_ | 1785015193742344192 |
---|---|
author | MacPherson, Kathryn P. Eidson, Lori N. Houser, Madelyn C. Weiss, Blaine E. Gollihue, Jenna L. Herrick, Mary K. de Sousa Rodrigues, Maria Elizabeth Sniffen, Lindsey Weekman, Erica M. Hamilton, Adam M. Kelly, Sean D. Oliver, Danielle L. Yang, Yuan Chang, Jianjun Sampson, Timothy R. Norris, Christopher M. Tansey, Malú Gámez |
author_facet | MacPherson, Kathryn P. Eidson, Lori N. Houser, Madelyn C. Weiss, Blaine E. Gollihue, Jenna L. Herrick, Mary K. de Sousa Rodrigues, Maria Elizabeth Sniffen, Lindsey Weekman, Erica M. Hamilton, Adam M. Kelly, Sean D. Oliver, Danielle L. Yang, Yuan Chang, Jianjun Sampson, Timothy R. Norris, Christopher M. Tansey, Malú Gámez |
author_sort | MacPherson, Kathryn P. |
collection | PubMed |
description | Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer’s disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic. |
format | Online Article Text |
id | pubmed-10052573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100525732023-03-30 Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer’s disease mouse model MacPherson, Kathryn P. Eidson, Lori N. Houser, Madelyn C. Weiss, Blaine E. Gollihue, Jenna L. Herrick, Mary K. de Sousa Rodrigues, Maria Elizabeth Sniffen, Lindsey Weekman, Erica M. Hamilton, Adam M. Kelly, Sean D. Oliver, Danielle L. Yang, Yuan Chang, Jianjun Sampson, Timothy R. Norris, Christopher M. Tansey, Malú Gámez Front Cell Neurosci Cellular Neuroscience Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer’s disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic. Frontiers Media S.A. 2023-03-15 /pmc/articles/PMC10052573/ /pubmed/37006470 http://dx.doi.org/10.3389/fncel.2023.895017 Text en Copyright © 2023 MacPherson, Eidson, Houser, Weiss, Gollihue, Herrick, de Sousa Rodrigues, Sniffen, Weekman, Hamilton, Kelly, Oliver, Yang, Chang, Sampson, Norris and Tansey. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular Neuroscience MacPherson, Kathryn P. Eidson, Lori N. Houser, Madelyn C. Weiss, Blaine E. Gollihue, Jenna L. Herrick, Mary K. de Sousa Rodrigues, Maria Elizabeth Sniffen, Lindsey Weekman, Erica M. Hamilton, Adam M. Kelly, Sean D. Oliver, Danielle L. Yang, Yuan Chang, Jianjun Sampson, Timothy R. Norris, Christopher M. Tansey, Malú Gámez Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer’s disease mouse model |
title | Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer’s disease mouse model |
title_full | Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer’s disease mouse model |
title_fullStr | Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer’s disease mouse model |
title_full_unstemmed | Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer’s disease mouse model |
title_short | Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer’s disease mouse model |
title_sort | soluble tnf mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an alzheimer’s disease mouse model |
topic | Cellular Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052573/ https://www.ncbi.nlm.nih.gov/pubmed/37006470 http://dx.doi.org/10.3389/fncel.2023.895017 |
work_keys_str_mv | AT macphersonkathrynp solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT eidsonlorin solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT housermadelync solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT weissblainee solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT gollihuejennal solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT herrickmaryk solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT desousarodriguesmariaelizabeth solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT sniffenlindsey solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT weekmanericam solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT hamiltonadamm solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT kellyseand solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT oliverdaniellel solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT yangyuan solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT changjianjun solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT sampsontimothyr solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT norrischristopherm solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel AT tanseymalugamez solubletnfmediatesamyloidindependentdietinducedalterationstoimmuneandneuronalfunctionsinanalzheimersdiseasemousemodel |