Cargando…

Time-Optimal Asymmetric S-Curve Trajectory Planning of Redundant Manipulators under Kinematic Constraints

This paper proposes a novel trajectory planning algorithm to design an end-effector motion profile along a specified path. An optimization model based on the whale optimization algorithm (WOA) is established for time-optimal asymmetrical S-curve velocity scheduling. Trajectories designed by end-effe...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Tianyu, Cui, Jingkai, Li, Yanhui, Gao, Siyuan, Zhu, Mingchao, Chen, Liheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052581/
https://www.ncbi.nlm.nih.gov/pubmed/36991787
http://dx.doi.org/10.3390/s23063074
Descripción
Sumario:This paper proposes a novel trajectory planning algorithm to design an end-effector motion profile along a specified path. An optimization model based on the whale optimization algorithm (WOA) is established for time-optimal asymmetrical S-curve velocity scheduling. Trajectories designed by end-effector limits may violate kinematic constraints due to the non-linear relationship between the operation and joint space of redundant manipulators. A constraints conversion approach is proposed to update end-effector limits. The path can be divided into segments at the minimum of the updated limitations. On each path segment, the jerk-limited S-shaped velocity profile is generated within the updated limitations. The proposed method aims to generate end-effector trajectory by kinematic constraints which are imposed on joints, resulting in efficient robot motion performance. The WOA-based asymmetrical S-curve velocity scheduling algorithm can be automatically adjusted for different path lengths and start/end velocities, allowing flexibility in finding the time-optimal solution under complex constraints. Simulations and experiments on a redundant manipulator prove the effect and superiority of the proposed method.