Cargando…
Amphiphilic Polyethylene-b-poly(L-lysine) Block Copolymer: Synthesis, Self-Assembly, and Responsivity
Polyethylene-b-polypeptide copolymers are biologically interesting, but studies of their synthesis and properties are very few. This paper reports synthesis and characterization of well-defined amphiphilic polyethylene-block-poly(L-lysine) (PE-b-PLL) block copolymers by combining nickel-catalyzed li...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052655/ https://www.ncbi.nlm.nih.gov/pubmed/36982576 http://dx.doi.org/10.3390/ijms24065495 |
Sumario: | Polyethylene-b-polypeptide copolymers are biologically interesting, but studies of their synthesis and properties are very few. This paper reports synthesis and characterization of well-defined amphiphilic polyethylene-block-poly(L-lysine) (PE-b-PLL) block copolymers by combining nickel-catalyzed living ethylene polymerization with controlled ring-opening polymerization (ROP) of ε-benzyloxycarbonyl-L-lysine-N-carboxyanhydride (Z-Lys-NCA) and sequential post-functionalization. Amphiphilic PE-b-PLL block copolymers self-assembled into spherical micelles with a hydrophobic PE core in aqueous solution. The pH and ionic responsivities of PE-b-PLL polymeric micelles were investigated by means of fluorescence spectroscopy, dynamic light scattering, UV-circular dichroism, and transmission electron microscopy. The variation of pH values led to the conformational alteration of PLL from α-helix to coil, thereby changing the micelle dimensions. |
---|