Cargando…
Hyperparameter Optimization of a Convolutional Neural Network Model for Pipe Burst Location in Water Distribution Networks
The current paper presents a hyper parameterization optimization process for a convolutional neural network (CNN) applied to pipe burst locations in water distribution networks (WDN). The hyper parameterization process of the CNN includes the early stopping termination criteria, dataset size, datase...
Autores principales: | Antunes, André, Ferreira, Bruno, Marques, Nuno, Carriço, Nelson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052689/ https://www.ncbi.nlm.nih.gov/pubmed/36976119 http://dx.doi.org/10.3390/jimaging9030068 |
Ejemplares similares
-
Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes
por: Motta, Daniel, et al.
Publicado: (2020) -
Multi-Process Remora Enhanced Hyperparameters of Convolutional Neural Network for Lung Cancer Prediction
por: Appadurai, Jothi Prabha, et al.
Publicado: (2023) -
Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms
por: Krasteva, Vessela, et al.
Publicado: (2020) -
Parsimonious Optimization of Multitask Neural Network Hyperparameters
por: Valsecchi, Cecile, et al.
Publicado: (2021) -
An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System
por: Yousaf, Iqra, et al.
Publicado: (2022)