Cargando…
One Pot Self-Assembling Fe@PANI Core–Shell Nanowires for Radar Absorption Application
The one-pot process, which combines the polymerization of polyaniline (i.e., PANI) with subsequent reduction of iron nanowire (i.e., Fe NW) under a magnetic field, was developed to produce Fe@PANI core–shell nanowires. The synthesized nanowires with various PANI additions (0–30 wt.%) were characteri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052763/ https://www.ncbi.nlm.nih.gov/pubmed/36985994 http://dx.doi.org/10.3390/nano13061100 |
Sumario: | The one-pot process, which combines the polymerization of polyaniline (i.e., PANI) with subsequent reduction of iron nanowire (i.e., Fe NW) under a magnetic field, was developed to produce Fe@PANI core–shell nanowires. The synthesized nanowires with various PANI additions (0–30 wt.%) were characterized and used as microwave absorbers. Epoxy composites with 10 wt.% absorbers were prepared and examined using the coaxial method to reveal their microwave absorbing performance. Experimental results showed that the Fe NWs with PANI additions (0–30 wt.%) had average diameters ranging from 124.72 to 309.73 nm. As PANI addition increases, the α-Fe phase content and the grain size decrease, while the specific surface area increases. The nanowire-added composites exhibited superior microwave absorption performance with wide effective absorption bandwidths. Among them, Fe@PANI-90/10 exhibits the best overall microwave absorption performance. With a thickness of 2.3 mm, effective absorption bandwidth was the widest and reached 3.73 GHz, ranging from 9.73 to 13.46 GHz. Whereas with a thickness of 5.4 mm, Fe@PANI-90/10 reached the best reflection loss of −31.87 dB at 4.53 GHz. |
---|