Cargando…

Recent Developments in Direct C–H Functionalization of Quinoxalin-2(1H)-Ones via Multi-Component Tandem Reactions

The direct C–H multifunctionalization of quinoxalin-2(1H)-ones via multicomponent reactions has attracted considerable interest due to their diverse biological activities and chemical profile. This review will focus on recent achievements. It mainly covers reaction methods for the simultaneous intro...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qiming, Wang, Biao, Wu, Mian, Lei, Yi-Zhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052782/
https://www.ncbi.nlm.nih.gov/pubmed/36985484
http://dx.doi.org/10.3390/molecules28062513
Descripción
Sumario:The direct C–H multifunctionalization of quinoxalin-2(1H)-ones via multicomponent reactions has attracted considerable interest due to their diverse biological activities and chemical profile. This review will focus on recent achievements. It mainly covers reaction methods for the simultaneous introduction of C–C bonds and C–R(F)/C/O/N/Cl/S/D bonds into quinoxalin-2(1H)-ones and their reaction mechanisms. Meanwhile, future developments of multi-component reactions of quinoxalin-2(1H)-ones are envisaged, such as the simultaneous construction of C–C and C–B/SI/P/F/I/SE bonds through multi-component reactions; the construction of fused ring and macrocyclic compounds; asymmetric synthesis; green chemistry; bionic structures and other fields. The aim is to enrich the methods for the reaction of quinoxalin-2(1H)-ones at the C3 position, which have rich applications in materials chemistry and pharmaceutical pharmacology.