Cargando…
Deep generative model for drug design from protein target sequence
Drug discovery for a protein target is a laborious and costly process. Deep learning (DL) methods have been applied to drug discovery and successfully generated novel molecular structures, and they can substantially reduce development time and costs. However, most of them rely on prior knowledge, ei...
Autores principales: | Chen, Yangyang, Wang, Zixu, Wang, Lei, Wang, Jianmin, Li, Pengyong, Cao, Dongsheng, Zeng, Xiangxiang, Ye, Xiucai, Sakurai, Tetsuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052801/ https://www.ncbi.nlm.nih.gov/pubmed/36978179 http://dx.doi.org/10.1186/s13321-023-00702-2 |
Ejemplares similares
-
Deep generative molecular design reshapes drug discovery
por: Zeng, Xiangxiang, et al.
Publicado: (2022) -
Detecting Interactive Gene Groups for Single-Cell RNA-Seq Data Based on Co-Expression Network Analysis and Subgraph Learning
por: Ye, Xiucai, et al.
Publicado: (2020) -
Missing Value Imputation With Low-Rank Matrix Completion in Single-Cell RNA-Seq Data by Considering Cell Heterogeneity
por: Huang, Meng, et al.
Publicado: (2022) -
Adaptive learning embedding features to improve the predictive performance of SARS-CoV-2 phosphorylation sites
por: Jiao, Shihu, et al.
Publicado: (2023) -
Ensemble Feature Learning to Identify Risk Factors for Predicting Secondary Cancer
por: Ye, Xiucai, et al.
Publicado: (2019)