Cargando…

Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer

Left Ventricle (LV) detection from Cardiac Magnetic Resonance (CMR) imaging is a fundamental step, preliminary to myocardium segmentation and characterization. This paper focuses on the application of a Visual Transformer (ViT), a novel neural network architecture, to automatically detect LV from CM...

Descripción completa

Detalles Bibliográficos
Autores principales: De Santi, Lisa Anita, Meloni, Antonella, Santarelli, Maria Filomena, Pistoia, Laura, Spasiano, Anna, Casini, Tommaso, Putti, Maria Caterina, Cuccia, Liana, Cademartiri, Filippo, Positano, Vincenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052975/
https://www.ncbi.nlm.nih.gov/pubmed/36992032
http://dx.doi.org/10.3390/s23063321
_version_ 1785015290259570688
author De Santi, Lisa Anita
Meloni, Antonella
Santarelli, Maria Filomena
Pistoia, Laura
Spasiano, Anna
Casini, Tommaso
Putti, Maria Caterina
Cuccia, Liana
Cademartiri, Filippo
Positano, Vincenzo
author_facet De Santi, Lisa Anita
Meloni, Antonella
Santarelli, Maria Filomena
Pistoia, Laura
Spasiano, Anna
Casini, Tommaso
Putti, Maria Caterina
Cuccia, Liana
Cademartiri, Filippo
Positano, Vincenzo
author_sort De Santi, Lisa Anita
collection PubMed
description Left Ventricle (LV) detection from Cardiac Magnetic Resonance (CMR) imaging is a fundamental step, preliminary to myocardium segmentation and characterization. This paper focuses on the application of a Visual Transformer (ViT), a novel neural network architecture, to automatically detect LV from CMR relaxometry sequences. We implemented an object detector based on the ViT model to identify LV from CMR multi-echo T2* sequences. We evaluated performances differentiated by slice location according to the American Heart Association model using 5-fold cross-validation and on an independent dataset of CMR T2*, T2, and T1 acquisitions. To the best of our knowledge, this is the first attempt to localize LV from relaxometry sequences and the first application of ViT for LV detection. We collected an Intersection over Union ([Formula: see text]) index of 0.68 and a Correct Identification Rate ([Formula: see text]) of blood pool centroid of 0.99, comparable with other state-of-the-art methods.  [Formula: see text]  and  [Formula: see text]  values were significantly lower in apical slices. No significant differences in performances were assessed on independent T2* dataset ([Formula: see text]  = 0.68, p = 0.405;  [Formula: see text]  = 0.94, p = 0.066). Performances were significantly worse on the T2 and T1 independent datasets (T2:  [Formula: see text]  = 0.62,  [Formula: see text]  = 0.95; T1:  [Formula: see text]  = 0.67,  [Formula: see text]  = 0.98), but still encouraging considering the different types of acquisition. This study confirms the feasibility of the application of ViT architectures in LV detection and defines a benchmark for relaxometry imaging.
format Online
Article
Text
id pubmed-10052975
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100529752023-03-30 Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer De Santi, Lisa Anita Meloni, Antonella Santarelli, Maria Filomena Pistoia, Laura Spasiano, Anna Casini, Tommaso Putti, Maria Caterina Cuccia, Liana Cademartiri, Filippo Positano, Vincenzo Sensors (Basel) Article Left Ventricle (LV) detection from Cardiac Magnetic Resonance (CMR) imaging is a fundamental step, preliminary to myocardium segmentation and characterization. This paper focuses on the application of a Visual Transformer (ViT), a novel neural network architecture, to automatically detect LV from CMR relaxometry sequences. We implemented an object detector based on the ViT model to identify LV from CMR multi-echo T2* sequences. We evaluated performances differentiated by slice location according to the American Heart Association model using 5-fold cross-validation and on an independent dataset of CMR T2*, T2, and T1 acquisitions. To the best of our knowledge, this is the first attempt to localize LV from relaxometry sequences and the first application of ViT for LV detection. We collected an Intersection over Union ([Formula: see text]) index of 0.68 and a Correct Identification Rate ([Formula: see text]) of blood pool centroid of 0.99, comparable with other state-of-the-art methods.  [Formula: see text]  and  [Formula: see text]  values were significantly lower in apical slices. No significant differences in performances were assessed on independent T2* dataset ([Formula: see text]  = 0.68, p = 0.405;  [Formula: see text]  = 0.94, p = 0.066). Performances were significantly worse on the T2 and T1 independent datasets (T2:  [Formula: see text]  = 0.62,  [Formula: see text]  = 0.95; T1:  [Formula: see text]  = 0.67,  [Formula: see text]  = 0.98), but still encouraging considering the different types of acquisition. This study confirms the feasibility of the application of ViT architectures in LV detection and defines a benchmark for relaxometry imaging. MDPI 2023-03-21 /pmc/articles/PMC10052975/ /pubmed/36992032 http://dx.doi.org/10.3390/s23063321 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
De Santi, Lisa Anita
Meloni, Antonella
Santarelli, Maria Filomena
Pistoia, Laura
Spasiano, Anna
Casini, Tommaso
Putti, Maria Caterina
Cuccia, Liana
Cademartiri, Filippo
Positano, Vincenzo
Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer
title Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer
title_full Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer
title_fullStr Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer
title_full_unstemmed Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer
title_short Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer
title_sort left ventricle detection from cardiac magnetic resonance relaxometry images using visual transformer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052975/
https://www.ncbi.nlm.nih.gov/pubmed/36992032
http://dx.doi.org/10.3390/s23063321
work_keys_str_mv AT desantilisaanita leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT meloniantonella leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT santarellimariafilomena leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT pistoialaura leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT spasianoanna leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT casinitommaso leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT puttimariacaterina leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT cuccialiana leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT cademartirifilippo leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer
AT positanovincenzo leftventricledetectionfromcardiacmagneticresonancerelaxometryimagesusingvisualtransformer