Cargando…
Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: a retrospective multi-center study
PURPOSE: To develop machine learning-based radiomics models derive from different MRI sequences for distinction between benign and malignant PI-RADS 3 lesions before intervention, and to cross-institution validate the generalization ability of the models. METHODS: The pre-biopsy MRI datas of 463 pat...
Autores principales: | Jin, Pengfei, Shen, Junkang, Yang, Liqin, Zhang, Ji, Shen, Ao, Bao, Jie, Wang, Ximing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053087/ https://www.ncbi.nlm.nih.gov/pubmed/36991347 http://dx.doi.org/10.1186/s12880-023-01002-9 |
Ejemplares similares
-
Utility of Clinical–Radiomic Model to Identify Clinically Significant Prostate Cancer in Biparametric MRI PI-RADS V2.1 Category 3 Lesions
por: Jin, Pengfei, et al.
Publicado: (2022) -
An MRI-Based Radiomics Model for Predicting the Benignity and Malignancy of BI-RADS 4 Breast Lesions
por: Zhang, Renzhi, et al.
Publicado: (2022) -
MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI
por: Chen, Tong, et al.
Publicado: (2022) -
Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic‐Based Model vs. PI‐RADS v2
por: Chen, Tong, et al.
Publicado: (2018) -
Combining clinical and MRI data to manage PI-RADS 3 lesions and reduce excessive biopsy
por: Yang, Shuo, et al.
Publicado: (2020)