Cargando…
Ultrasound and Microwave-Assisted Synthesis of Hexagonally Ordered Ce-Promoted Mesoporous Silica as Ni Supports for Ethanol Steam Reforming
Solvothermal synthesis of mesoporous materials based on amphiphilic molecules as structure-directing agents can be enhanced using non-conventional technologies for stirring and thermal activation. Here, we disclose a green synthesis approach for the preparation of cerium-modified hexagonally ordered...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053107/ https://www.ncbi.nlm.nih.gov/pubmed/36985891 http://dx.doi.org/10.3390/nano13060997 |
Sumario: | Solvothermal synthesis of mesoporous materials based on amphiphilic molecules as structure-directing agents can be enhanced using non-conventional technologies for stirring and thermal activation. Here, we disclose a green synthesis approach for the preparation of cerium-modified hexagonally ordered silica sieves. Ultrasound micromixing enabled us to obtain well-dispersed Ce in the self-assembled silica network and yielded ordered materials with high cerium content (Ce/Si molar ratio = 0.08). Microwave dielectric heating, applied by an innovative open-end coaxial antenna, was used to reduce the overall hydrothermal synthesis time and to improve the surface area and textural properties. These mesoporous materials were used as a Ni catalyst support (10 wt.% metal loading) for the ethanol steam reforming reaction. The new catalysts featured complete ethanol conversion, high H(2) selectivity (65%) and better stability, compared to the same catalyst prepared with magnetic stirring and conventional heating. The Ce-promoted silica sieves offered a suitable support for the controlled growth of nanocarbon that does not result in catalyst deactivation or poisoning after 6 h on stream. |
---|