Cargando…

Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network

AIMS: We aim to develop a pragmatic screening tool for heart failure at the general population level. METHODS AND RESULTS: This study was conducted within the Hamburg‐City‐Health‐Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg aged 4...

Descripción completa

Detalles Bibliográficos
Autores principales: Surendra, Kishore, Nürnberg, Sylvia, Bremer, Jan P., Knorr, Marius S., Ückert, Frank, Wenzel, Jan Per, Bei der Kellen, Ramona, Westermann, Dirk, Schnabel, Renate B., Twerenbold, Raphael, Magnussen, Christina, Kirchhof, Paulus, Blankenberg, Stefan, Neumann, Johannes, Schrage, Benedikt
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053173/
https://www.ncbi.nlm.nih.gov/pubmed/36482800
http://dx.doi.org/10.1002/ehf2.14263
_version_ 1785015349459025920
author Surendra, Kishore
Nürnberg, Sylvia
Bremer, Jan P.
Knorr, Marius S.
Ückert, Frank
Wenzel, Jan Per
Bei der Kellen, Ramona
Westermann, Dirk
Schnabel, Renate B.
Twerenbold, Raphael
Magnussen, Christina
Kirchhof, Paulus
Blankenberg, Stefan
Neumann, Johannes
Schrage, Benedikt
author_facet Surendra, Kishore
Nürnberg, Sylvia
Bremer, Jan P.
Knorr, Marius S.
Ückert, Frank
Wenzel, Jan Per
Bei der Kellen, Ramona
Westermann, Dirk
Schnabel, Renate B.
Twerenbold, Raphael
Magnussen, Christina
Kirchhof, Paulus
Blankenberg, Stefan
Neumann, Johannes
Schrage, Benedikt
author_sort Surendra, Kishore
collection PubMed
description AIMS: We aim to develop a pragmatic screening tool for heart failure at the general population level. METHODS AND RESULTS: This study was conducted within the Hamburg‐City‐Health‐Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg aged 45–75 years. Heart failure was diagnosed per current guidelines. Using only digital electrocardiograms (ECGs), a convolutional neural network (CNN) was built to discriminate participants with and without heart failure. As comparisons, known risk variables for heart failure were fitted into a logistic regression model and a random forest classifier. Of the 5299 individuals included into this study, 318 individuals (6.0%) had heart failure. Using only the digital ECGs instead of several risk variables as an input, the CNN provided a comparable predictive accuracy for heart failure versus the logistic regression model and the random forest classifier [area under the curve (AUC) of 0.75, a sensitivity of 0.67 and a specificity of 0.69 for the CNN; AUC 0.77, a sensitivity of 0.63 and a specificity of 0.76 for the logistic regression; AUC 0.79, a sensitivity of 0.67 and a specificity of 0.72 for the random forest classifier]. CONCLUSIONS: Using a CNN build on digital ECGs only and requiring no additional input, we derived a screening tool for heart failure in the general population. This could be perfectly embedded into clinical routine of general practitioners, as it builds on an already established diagnostic tool and does not require additional, time‐consuming input. This could help to alleviate the underdiagnosis of heart failure.
format Online
Article
Text
id pubmed-10053173
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-100531732023-03-30 Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network Surendra, Kishore Nürnberg, Sylvia Bremer, Jan P. Knorr, Marius S. Ückert, Frank Wenzel, Jan Per Bei der Kellen, Ramona Westermann, Dirk Schnabel, Renate B. Twerenbold, Raphael Magnussen, Christina Kirchhof, Paulus Blankenberg, Stefan Neumann, Johannes Schrage, Benedikt ESC Heart Fail Original Articles AIMS: We aim to develop a pragmatic screening tool for heart failure at the general population level. METHODS AND RESULTS: This study was conducted within the Hamburg‐City‐Health‐Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg aged 45–75 years. Heart failure was diagnosed per current guidelines. Using only digital electrocardiograms (ECGs), a convolutional neural network (CNN) was built to discriminate participants with and without heart failure. As comparisons, known risk variables for heart failure were fitted into a logistic regression model and a random forest classifier. Of the 5299 individuals included into this study, 318 individuals (6.0%) had heart failure. Using only the digital ECGs instead of several risk variables as an input, the CNN provided a comparable predictive accuracy for heart failure versus the logistic regression model and the random forest classifier [area under the curve (AUC) of 0.75, a sensitivity of 0.67 and a specificity of 0.69 for the CNN; AUC 0.77, a sensitivity of 0.63 and a specificity of 0.76 for the logistic regression; AUC 0.79, a sensitivity of 0.67 and a specificity of 0.72 for the random forest classifier]. CONCLUSIONS: Using a CNN build on digital ECGs only and requiring no additional input, we derived a screening tool for heart failure in the general population. This could be perfectly embedded into clinical routine of general practitioners, as it builds on an already established diagnostic tool and does not require additional, time‐consuming input. This could help to alleviate the underdiagnosis of heart failure. John Wiley and Sons Inc. 2022-12-08 /pmc/articles/PMC10053173/ /pubmed/36482800 http://dx.doi.org/10.1002/ehf2.14263 Text en © 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Articles
Surendra, Kishore
Nürnberg, Sylvia
Bremer, Jan P.
Knorr, Marius S.
Ückert, Frank
Wenzel, Jan Per
Bei der Kellen, Ramona
Westermann, Dirk
Schnabel, Renate B.
Twerenbold, Raphael
Magnussen, Christina
Kirchhof, Paulus
Blankenberg, Stefan
Neumann, Johannes
Schrage, Benedikt
Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_full Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_fullStr Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_full_unstemmed Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_short Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_sort pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053173/
https://www.ncbi.nlm.nih.gov/pubmed/36482800
http://dx.doi.org/10.1002/ehf2.14263
work_keys_str_mv AT surendrakishore pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT nurnbergsylvia pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT bremerjanp pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT knorrmariuss pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT uckertfrank pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT wenzeljanper pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT beiderkellenramona pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT westermanndirk pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT schnabelrenateb pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT twerenboldraphael pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT magnussenchristina pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT kirchhofpaulus pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT blankenbergstefan pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT neumannjohannes pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT schragebenedikt pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork