Cargando…
A High-Linearity Glucose Sensor Based on Silver-Doped Con A Hydrogel and Laser Direct Writing
A continuous glucose monitoring (CGM) system is an ideal monitoring system for the blood glucose control of diabetic patients. The development of flexible glucose sensors with good glucose-responsive ability and high linearity within a large detection range is still challenging in the field of conti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053202/ https://www.ncbi.nlm.nih.gov/pubmed/36987204 http://dx.doi.org/10.3390/polym15061423 |
Sumario: | A continuous glucose monitoring (CGM) system is an ideal monitoring system for the blood glucose control of diabetic patients. The development of flexible glucose sensors with good glucose-responsive ability and high linearity within a large detection range is still challenging in the field of continuous glucose detection. A silver-doped Concanavalin A (Con A)-based hydrogel sensor is proposed to address the above issues. The proposed flexible enzyme-free glucose sensor was prepared by combining Con-A-based glucose-responsive hydrogels with green-synthetic silver particles on laser direct-writing graphene electrodes. The experimental results showed that in a glucose concentration range of 0–30 mM, the proposed sensor is capable of measuring the glucose level in a repeatable and reversible manner, showing a sensitivity of 150.12 Ω/mM with high linearity of R(2) = 0.97. Due to its high performance and simple manufacturing process, the proposed glucose sensor is excellent among existing enzyme-free glucose sensors. It has good potential in the development of CGM devices. |
---|