Cargando…
Overview of Spiking Neural Network Learning Approaches and Their Computational Complexities
Spiking neural networks (SNNs) are subjects of a topic that is gaining more and more interest nowadays. They more closely resemble actual neural networks in the brain than their second-generation counterparts, artificial neural networks (ANNs). SNNs have the potential to be more energy efficient tha...
Autores principales: | Pietrzak, Paweł, Szczęsny, Szymon, Huderek, Damian, Przyborowski, Łukasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053242/ https://www.ncbi.nlm.nih.gov/pubmed/36991750 http://dx.doi.org/10.3390/s23063037 |
Ejemplares similares
-
Spiking Neural Network with Linear Computational Complexity for Waveform Analysis in Amperometry
por: Szczęsny, Szymon, et al.
Publicado: (2021) -
Spiking neural networks for computer vision
por: Hopkins, Michael, et al.
Publicado: (2018) -
Exploiting noise as a resource for computation and learning in spiking neural networks
por: Ma, Gehua, et al.
Publicado: (2023) -
An Overview of Bayesian Methods for Neural Spike Train Analysis
por: Chen, Zhe
Publicado: (2013) -
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks
por: Zenke, Friedemann, et al.
Publicado: (2018)