Cargando…
Low level of antioxidant capacity biomarkers but not target overexpression predicts vulnerability to ROS-inducing drugs
Despite a strong rationale for why cancer cells are susceptible to redox-targeting drugs, such drugs often face tumor resistance or dose-limiting toxicity in preclinical and clinical studies. An important reason is the lack of specific biomarkers to better select susceptible cancer entities and stra...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053401/ https://www.ncbi.nlm.nih.gov/pubmed/36958250 http://dx.doi.org/10.1016/j.redox.2023.102639 |
Sumario: | Despite a strong rationale for why cancer cells are susceptible to redox-targeting drugs, such drugs often face tumor resistance or dose-limiting toxicity in preclinical and clinical studies. An important reason is the lack of specific biomarkers to better select susceptible cancer entities and stratify patients. Using a large panel of lung cancer cell lines, we identified a set of “antioxidant-capacity” biomarkers (ACB), which were tightly repressed, partly by STAT3 and STAT5A/B in sensitive cells, rendering them susceptible to multiple redox-targeting and ferroptosis-inducing drugs. Contrary to expectation, constitutively low ACB expression was not associated with an increased steady state level of reactive oxygen species (ROS) but a high level of nitric oxide, which is required to sustain high replication rates. Using ACBs, we identified cancer entities with a high percentage of patients with favorable ACB expression pattern, making it likely that more responders to ROS-inducing drugs could be stratified for clinical trials. |
---|