Cargando…
Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa
BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen consisting of three phylogroups (hereafter named A, B, and C). Here, we assessed phylogroup-specific evolutionary dynamics across available and also new P. aeruginosa genomes. METHODS: In this genomic analysis, we first generated new ge...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053402/ https://www.ncbi.nlm.nih.gov/pubmed/36958270 http://dx.doi.org/10.1016/j.ebiom.2023.104532 |
_version_ | 1785015405594542080 |
---|---|
author | Botelho, João Tüffers, Leif Fuss, Janina Buchholz, Florian Utpatel, Christian Klockgether, Jens Niemann, Stefan Tümmler, Burkhard Schulenburg, Hinrich |
author_facet | Botelho, João Tüffers, Leif Fuss, Janina Buchholz, Florian Utpatel, Christian Klockgether, Jens Niemann, Stefan Tümmler, Burkhard Schulenburg, Hinrich |
author_sort | Botelho, João |
collection | PubMed |
description | BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen consisting of three phylogroups (hereafter named A, B, and C). Here, we assessed phylogroup-specific evolutionary dynamics across available and also new P. aeruginosa genomes. METHODS: In this genomic analysis, we first generated new genome assemblies for 18 strains of the major P. aeruginosa clone type (mPact) panel, comprising a phylogenetically diverse collection of clinical and environmental isolates for this species. Thereafter, we combined these new genomes with 1991 publicly available P. aeruginosa genomes for a phylogenomic and comparative analysis. We specifically explored to what extent antimicrobial resistance (AMR) genes, defence systems, and virulence genes vary in their distribution across regions of genome plasticity (RGPs) and “masked” (RGP-free) genomes, and to what extent this variation differs among the phylogroups. FINDINGS: We found that members of phylogroup B possess larger genomes, contribute a comparatively larger number of pangenome families, and show lower abundance of CRISPR-Cas systems. Furthermore, AMR and defence systems are pervasive in RGPs and integrative and conjugative/mobilizable elements (ICEs/IMEs) from phylogroups A and B, and the abundance of these cargo genes is often significantly correlated. Moreover, inter- and intra-phylogroup interactions occur at the accessory genome level, suggesting frequent recombination events. Finally, we provide here the mPact panel of diverse P. aeruginosa strains that may serve as a valuable reference for functional analyses. INTERPRETATION: Altogether, our results highlight distinct pangenome characteristics of the P. aeruginosa phylogroups, which are possibly influenced by variation in the abundance of CRISPR-Cas systems and are shaped by the differential distribution of other defence systems and AMR genes. FUNDING: German Science Foundation, Max-Planck Society, Leibniz ScienceCampus Evolutionary Medicine of the Lung, BMBF program Medical Infection Genomics, Kiel Life Science Postdoc Award. |
format | Online Article Text |
id | pubmed-10053402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100534022023-03-30 Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa Botelho, João Tüffers, Leif Fuss, Janina Buchholz, Florian Utpatel, Christian Klockgether, Jens Niemann, Stefan Tümmler, Burkhard Schulenburg, Hinrich eBioMedicine Articles BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen consisting of three phylogroups (hereafter named A, B, and C). Here, we assessed phylogroup-specific evolutionary dynamics across available and also new P. aeruginosa genomes. METHODS: In this genomic analysis, we first generated new genome assemblies for 18 strains of the major P. aeruginosa clone type (mPact) panel, comprising a phylogenetically diverse collection of clinical and environmental isolates for this species. Thereafter, we combined these new genomes with 1991 publicly available P. aeruginosa genomes for a phylogenomic and comparative analysis. We specifically explored to what extent antimicrobial resistance (AMR) genes, defence systems, and virulence genes vary in their distribution across regions of genome plasticity (RGPs) and “masked” (RGP-free) genomes, and to what extent this variation differs among the phylogroups. FINDINGS: We found that members of phylogroup B possess larger genomes, contribute a comparatively larger number of pangenome families, and show lower abundance of CRISPR-Cas systems. Furthermore, AMR and defence systems are pervasive in RGPs and integrative and conjugative/mobilizable elements (ICEs/IMEs) from phylogroups A and B, and the abundance of these cargo genes is often significantly correlated. Moreover, inter- and intra-phylogroup interactions occur at the accessory genome level, suggesting frequent recombination events. Finally, we provide here the mPact panel of diverse P. aeruginosa strains that may serve as a valuable reference for functional analyses. INTERPRETATION: Altogether, our results highlight distinct pangenome characteristics of the P. aeruginosa phylogroups, which are possibly influenced by variation in the abundance of CRISPR-Cas systems and are shaped by the differential distribution of other defence systems and AMR genes. FUNDING: German Science Foundation, Max-Planck Society, Leibniz ScienceCampus Evolutionary Medicine of the Lung, BMBF program Medical Infection Genomics, Kiel Life Science Postdoc Award. Elsevier 2023-03-21 /pmc/articles/PMC10053402/ /pubmed/36958270 http://dx.doi.org/10.1016/j.ebiom.2023.104532 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Articles Botelho, João Tüffers, Leif Fuss, Janina Buchholz, Florian Utpatel, Christian Klockgether, Jens Niemann, Stefan Tümmler, Burkhard Schulenburg, Hinrich Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa |
title | Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa |
title_full | Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa |
title_fullStr | Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa |
title_full_unstemmed | Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa |
title_short | Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa |
title_sort | phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in pseudomonas aeruginosa |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053402/ https://www.ncbi.nlm.nih.gov/pubmed/36958270 http://dx.doi.org/10.1016/j.ebiom.2023.104532 |
work_keys_str_mv | AT botelhojoao phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa AT tuffersleif phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa AT fussjanina phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa AT buchholzflorian phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa AT utpatelchristian phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa AT klockgetherjens phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa AT niemannstefan phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa AT tummlerburkhard phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa AT schulenburghinrich phylogroupspecificvariationshapestheclusteringofantimicrobialresistancegenesanddefencesystemsacrossregionsofgenomeplasticityinpseudomonasaeruginosa |